SearchParam
galaxy_ml.keras_galaxy_models.SearchParam(s_param, value)
Sortable Wrapper class for search parameters
KerasLayers
galaxy_ml.keras_galaxy_models.KerasLayers(name='sequential_1', layers=[])
Parameters
name: str
layers: list of dict, the configuration of model
BaseKerasModel
galaxy_ml.keras_galaxy_models.BaseKerasModel(config, model_type='sequential', optimizer='sgd', loss='binary_crossentropy', metrics=[], lr=None, momentum=None, decay=None, nesterov=None, rho=None, amsgrad=None, beta_1=None, beta_2=None, schedule_decay=None, epochs=1, batch_size=None, seed=None, callbacks=None, validation_fraction=0.1, steps_per_epoch=None, validation_steps=None, verbose=0)
Base class for Galaxy Keras wrapper
Parameters
- config: dictionary
frommodel.get_config()
- model_type: str
'sequential' or 'functional' - optimizer: str, default 'sgd'
'sgd', 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax', 'nadam' - loss: str, default 'binary_crossentropy'
same as Kerasloss
- metrics: list of strings, default []
- lr: None or float
optimizer parameter, default change withoptimizer
- momentum: None or float
for optimizersgd
only, ignored otherwise - nesterov: None or bool
for optimizersgd
only, ignored otherwise - decay: None or float
optimizer parameter, default change withoptimizer
- rho: None or float
optimizer parameter, default change withoptimizer
- amsgrad: None or bool
for optimizeradam
only, ignored otherwise - beta_1: None or float
optimizer parameter, default change withoptimizer
- beta_2: None or float
optimizer parameter, default change withoptimizer
- schedule_decay: None or float
optimizer parameter, default change withoptimizer
- epochs: int
fit_param from Keras - batch_size: None or int, default=None
fit_param, if None, will default to 32 - callbacks: None or list of dict
fit_param, each dict contains one type of callback configuration. e.g. {"callback_selection": {"callback_type": "EarlyStopping", "monitor": "val_loss" "baseline": None, "min_delta": 0.0, "patience": 10, "mode": "auto", "restore_best_weights": False}} - validation_fraction: Float. default=0.1
The proportion of training data to set aside as validation set. Must be within [0, 1). Will be ignored ifvalidation_data
is set via fit_params. - steps_per_epoch: int, default is None
fit param. The number of train batches per epoch - validation_steps: None or int, default is None
fit params, validation steps. if None, it will be number of samples divided by batch_size. - seed: None or int, default None
backend random seed - verbose: 0, 1 or 2
Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. If > 0, log device placement
KerasGClassifier
galaxy_ml.keras_galaxy_models.KerasGClassifier(config, model_type='sequential', optimizer='sgd', loss='binary_crossentropy', metrics=[], lr=None, momentum=None, decay=None, nesterov=None, rho=None, amsgrad=None, beta_1=None, beta_2=None, schedule_decay=None, epochs=1, batch_size=None, seed=None, callbacks=None, validation_fraction=0.1, steps_per_epoch=None, validation_steps=None, verbose=0)
Scikit-learn classifier API for Keras
KerasGRegressor
galaxy_ml.keras_galaxy_models.KerasGRegressor(config, model_type='sequential', optimizer='sgd', loss='binary_crossentropy', metrics=[], lr=None, momentum=None, decay=None, nesterov=None, rho=None, amsgrad=None, beta_1=None, beta_2=None, schedule_decay=None, epochs=1, batch_size=None, seed=None, callbacks=None, validation_fraction=0.1, steps_per_epoch=None, validation_steps=None, verbose=0)
Scikit-learn API wrapper for Keras regressor
KerasGBatchClassifier
galaxy_ml.keras_galaxy_models.KerasGBatchClassifier(config, data_batch_generator, model_type='sequential', optimizer='sgd', loss='binary_crossentropy', metrics=[], lr=None, momentum=None, decay=None, nesterov=None, rho=None, amsgrad=None, beta_1=None, beta_2=None, schedule_decay=None, epochs=1, batch_size=None, seed=None, n_jobs=1, callbacks=None, validation_fraction=0.1, steps_per_epoch=None, validation_steps=None, verbose=0, prediction_steps=None, class_positive_factor=1)
keras classifier with batch data generator
Parameters
- config: dictionary
frommodel.get_config()
- data_batch_generator: instance of batch data generator
- model_type: str
'sequential' or 'functional' - optimizer: str, default 'sgd'
'sgd', 'rmsprop', 'adagrad', 'adadelta', 'adam', 'adamax', 'nadam' - loss: str, default 'binary_crossentropy'
same as Kerasloss
- metrics: list of strings, default []
- lr: None or float
optimizer parameter, default change withoptimizer
- momentum: None or float
for optimizersgd
only, ignored otherwise - nesterov: None or bool
for optimizersgd
only, ignored otherwise - decay: None or float
optimizer parameter, default change withoptimizer
- rho: None or float
optimizer parameter, default change withoptimizer
- amsgrad: None or bool
for optimizeradam
only, ignored otherwise - beta_1: None or float
optimizer parameter, default change withoptimizer
- beta_2: None or float
optimizer parameter, default change withoptimizer
- schedule_decay: None or float
optimizer parameter, default change withoptimizer
- epochs: int
fit_param from Keras - batch_size: None or int, default=None
fit_param, if None, will default to 32 - callbacks: None or list of dict
each dict contains one type of callback configuration. e.g. {"callback_selection": {"callback_type": "EarlyStopping", "monitor": "val_loss" "baseline": None, "min_delta": 0.0, "patience": 10, "mode": "auto", "restore_best_weights": False}} - validation_fraction: Float. default=0.1
The proportion of training data to set aside as validation set. Must be within [0, 1). Will be ignored ifvalidation_data
is set via fit_params. - steps_per_epoch: int, default is None
fit param. The number of train batches per epoch - validation_steps: None or int, default is None
fit params, validation steps. if None, it will be number of samples divided by batch_size. - seed: None or int, default None
backend random seed - verbose: 0, 1 or 2
Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. If > 0, log device placement - n_jobs: int, default=1
- prediction_steps: None or int, default is None
prediction steps. If None, it will be number of samples divided by batch_size. - class_positive_factor: int or float, default=1
For binary classification only. If int, like 5, will convert to class_weight {0: 1, 1: 5}. If float, 0.2, corresponds to class_weight {0: 1/0.2, 1: 1}