[source]

BinarizeTargetClassifier

galaxy_ml.binarize_target._binarize_estimators.BinarizeTargetClassifier(classifier, z_score=-1, value=None, less_is_positive=True, verbose=0)

Convert continuous target to binary labels (True and False) and apply a classification estimator.

Parameters

  • classifier: object
    Estimator object such as derived from sklearn ClassifierMixin.
  • z_score: float, default=-1.0
    Threshold value based on z_score. Will be ignored when fixed_value is set
  • value: float, default=None
    Threshold value
  • less_is_positive: boolean, default=True
    When target is less the threshold value, it will be converted to True, False otherwise.
  • verbose: int, default=0
    If greater than 0, print discretizing info.

Attributes

  • classifier_: object
    Fitted classifier
  • discretize_value: float
    The threshold value used to discretize True and False targets

[source]

BinarizeTargetRegressor

galaxy_ml.binarize_target._binarize_estimators.BinarizeTargetRegressor(regressor, z_score=-1, value=None, less_is_positive=True, verbose=0)

Extend regression estimator to have discretize_value

Parameters

  • regressor: object
    Estimator object such as derived from sklearn RegressionMixin.
  • z_score: float, default=-1.0
    Threshold value based on z_score. Will be ignored when value is set
  • value: float, default=None
    Threshold value
  • less_is_positive: boolean, default=True
    When target is less the threshold value, it will be converted to True, False otherwise.
  • verbose: int, default=0
    If greater than 0, print discretizing info.

Attributes

  • regressor_: object
    Fitted regressor
  • discretize_value: float
    The threshold value used to discretize True and False targets

[source]

BinarizeTargetTransformer

galaxy_ml.binarize_target._binarize_estimators.BinarizeTargetTransformer(transformer, z_score=-1, value=None, less_is_positive=True)

Extend transformaer to work for binarized target.

Parameters

  • transformer: object
    Estimator object such as derived from sklearn TransformerMixin, including feature_selector and preprocessor
  • z_score: float, default=-1.0
    Threshold value based on z_score. Will be ignored when fixed_value is set
  • value: float, default=None
    Threshold value
  • less_is_positive: boolean, default=True
    When target is less the threshold value, it will be converted to True, False otherwise.

Attributes

  • transformer_: object
    Fitted regressor
  • discretize_value: float
    The threshold value used to discretize True and False targets

[source]

_BinarizeTargetThresholdScorer

sklearn.metrics.scorer._BinarizeTargetThresholdScorer(score_func, sign, kwargs)

Base class to make binarized target specific scorer.